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ABSTRACT 
Over the last several years there has been an explosion of 
powerful, affordable, multi-touch devices. This provides an 
outstanding opportunity for novel data visualization 
techniques that leverage new interaction methods and 
minimize their barriers to entry. In this paper we describe 
an approach for multivariate data visualization that uses 
physics-based affordances that are easy to intuit, constraints 
that are easy to apply and visualize, and a consistent view 
as data is manipulated in order to promote data exploration 
and interrogation. We provide a framework for exploring 
this problem space, and an example proof of concept 
system called Kinetica. We describe the results of a user 
study that suggest users of Kinetica were able to explore 
multiple dimensions of data at once, identify outliers, and 
discover trends with minimal training. 
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INTRODUCTION 
The ways in which people consume information and make 
decisions is changing rapidly, with a rise in powerful, 
affordable, multi-touch devices that support a wide range of 
interactions and applications. A 2013 Pew Research survey 
estimated that one third of American households owned a 
tablet computer [40], a number double that of the previous 
year. There has also come a bevy of collaborative surfaces, 
interactive whiteboards, and touch-enabled traditional PCs. 
These devices create an opportunity for developing natural 
user interfaces (NUIs) that are grounded in naturalistic 
human ways of interacting with real things [12]. 

However, despite the crucial importance of interpreting and 
understanding complex data in nearly any personal or 
business setting [31], existing information visualization 
techniques have largely failed to make effective use of the 
multi-touch, direct manipulation capabilities of these new, 
ubiquitous devices [23]. Instead, techniques remain 

primarily within the realm of traditional, directed 
interactions using WIMP metaphors. Lee et al. employed 
the terms post-WIMP and post direct manipulation to 
describe the rich area of research currently filling this gap 
[23].  Such techniques that move towards gestures and 
naturalistic interactions may have benefits for information 
literacy and awareness. For exploratory data visualization, 
post-WIMP approaches have the potential to preserve 
users’ growing mental model of an information space as 
they explore it, and help them interact with more variables 
more fluidly than traditional interfaces. This might help 
them understand the structure and distributions of data even 
without significant training or statistical expertise by 
leveraging their models of the physical world [18].  

In this paper we explore how post-WIMP interactions might 
improve exploratory data visualization through the 
introduction of physics-based affordances and multi-touch 
interaction techniques. Grounding data exploration in a 
physics-based metaphor may have a number of benefits, 
including supporting richer mental models of an 
information space by keeping data salient and fluidly 
tracking their locations over time; providing better 
awareness of amounts and distributions; making outliers 
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Figure 1: A user drags a two finger semi-permeable filter 

across some data. Points that meet its criteria collide and are 
pulled with it to the right, passing over unfiltered points. 



stand out over the course of exploration; and augmenting 
working memory through visual traces. It may also 
minimize training time and participation barriers by tapping 
into users’ knowledge of the physical world, their own 
bodies, their surroundings, and their social context [18]. We 
describe a proof of concept system, Kinetica, and use it to 
demonstrate some of the benefits of this approach through a 
comparative user study. We find that physics-based 
interactions help users explore multiple dimensions at once, 
make more descriptive and comparative findings about their 
data, and develop a more holistic understanding of a 
dataset. We also present a generative framework for 
naturalistic multi-touch visualization that may help to 
inspire future work in this space. Finally, we consider 
limitations and discuss areas for future work. 

RELATED WORK 
Below we briefly discuss some of the most relevant related 
work covering different aspects of post-WIMP information 
visualization and systems for exploring data. 

Multi-touch and Gestural Interaction 
Gestures, multi-touch, and physical interactions are key 
components of NUIs regardless of the particular 
application. Keefe and Isenberg [20] highlight some of the 
major interest areas for natural interaction in data 
visualization. Foremost are actual ways of interacting with 
data, which Isenberg and Isenberg [17] break down into the 
relationship between data representation and interaction 
technique. What are the interaction primitives one uses, and 
how do we bind them to data visualization operations? 
RoomPlanner [38] used physical actions like cupping a 
hand and transparency to make data easy to explore on a 
DiamondTouch surface, and Wilson et al. explored a wide 
variety of game physics-based interactions [35]. These 
interactions have the benefit of both ease of use and the 
ability for users to improvise new ones based on their 
experiences in the real world. Wobbrock et al. [36] take this 
idea further, allowing users to build their own gestures.  

Moving towards more structured interaction techniques, 
NEAT and interactive grids [9,10] provide a set of pen and 
touch primitives to align and locate data on a field. This can 
be critical given the imprecision that can accompany touch 
interaction. TouchWave [3] displays stacked hierarchical 
graphs much in the way a WIMP application might, but 
uses drags and swipes to scale and separate overlaps 
naturalistically. Schmidt et al. [28] treat graph edges and 
nodes like beads on strings that can be gathered and 
stacked. SketchInsight and SketchStory [24,34] combine 
interactive sketching with dynamically constructed 
traditional charts for didactic presentations. Some 
approaches even employ physical objects. Senseboard [19] 
places pucks on a grid to organize and manipulate 
information, while Ullmer et al. [33] use physical tokens to 
control and visualize database queries. 

Another crucial component Isenberg and Isenberg identify 
is evaluation. Drucker et al. [6] provide one such example. 

They use a grounded methodology to study user preference 
and effectiveness in different visualization prototypes in 
comparison, findings NUIs to be effective but at times 
constraining when people already knew what to do. 

Multivariate Data Visualization 
Wong and Bergeron provide a good summary of the history 
of multivariate visualization [37]. Early examples such as 
starfield visualizations [2], brushing [26], and dynamic 
querying [30] permit similar interactions, allowing users to 
filter different dimensions with active feedback. To 
visualize complex or categorical data, techniques such as 
parallel coordinates [16] and parallel sets [22] offload 
multivariate relationships onto a visual field, highlighting 
outliers and trends. DataMeadows [7] and Jigsaw [32] all 
use multiple techniques in tandem to represent trends or 
clusters within multiple dimensions. 

One highly relevant inspiration for our line of work is that 
of Yi et al.’s Dust & Magnet [39], which used a magnet 
physical metaphor to visualize multivariate data. By 
allowing users to place and move magnets, attracting 
points, users could discover trends among their data. We 
build on the idea of using physics and interaction to 
compress the dimensionality of multivariate data, but 
generalize to a wider set of physics-based techniques. 

Physics and Interactivity 
One avenue for intuitive, interesting interactions cited by 
Jacob et al. [18] is the introduction of physical metaphors. 
Bumptop [1] shows one such example in a general 
computing context. Files become physics objects that can 
be pinned to walls and moved around in an environment. 
This has the benefit of requiring minimal training, since 
people already intuit that objects fall and pins stick things to 
walls. North et al. [27] extend this sort of physics approach 
into data sorting in comparison with a traditional WIMP 
system. People readily adapted to physical models, 
outperforming those using a mouse. Force-based graph 
layouts use attraction and repulsion, which people naturally 
intuit, to make graph exploration easier [11]. Sticky tools 
make touch manipulations of objects more naturalistic and 
therefore easier [13]. Visual sedimentation metaphors use 
the buildup of material to analogize the aggregation of 
time-series data in an easily comprehensible way [15]. 

Klemmer, Hartmann, and Takayama [21] suggest a more 
general explanation of this sort of effect. The tangibility of 
an artifact, or how naturally it maps actions to physical 
reality can greatly influence the performance of a system. 
While closer mappings to reality may come with additional 
constraints and limitations, they also provide benefits for 
training and understanding, especially for inexpert users. 
This might extend beyond just NUIs. The description of 
post-WIMP possibilities that Jacobs et al. provide and the 
design considerations of Lee et al. [23] still might work 
within traditional mouse-and-keyboard computers. While 
they may not be quite as tangible as if one were touching 



the screen, the interactions and feedback may nonetheless 
remain physically grounded and beneficial. 

KINETICA 
To explore the benefits of physics-based affordances and 
multi-touch interactions for data visualization and to 
understand the technical challenges of implementing such 
techniques, we developed a proof of concept application 
called Kinetica. For our proof of concept, we used a tablet 
computer because it occupied the physical space of the user, 
could be twisted and turned, and was responsive to touch. 
We decided to use an iPad due to the convenience and 
general availability of the device, though we hope to extend 
Kinetica to more systems in the future. 

We implemented Kinetica using Objective C, and make use 
of an MIT licensed physics library called Chipmunk 
Physics [25] to handle forces and collisions. This library 
makes use of multiple CPU cores to improve efficiency. 
Indeed, the most computationally costly portion of the 
prototype was actually the rendering loop. 

We adopted an iterative strategy in developing the physics-
based interactions in Kinetica. Initially we encoded data 
into circles colliding in a sandbox, implemented a touch-
responsive magnet tool much like Dust & Magnet [39], and 
added gravity based on device orientation. This prototype 
by itself was evocative. By tilting the device so gravity took 
hold and pulling points with a magnet such that the forces 
balanced each other, data readily sorted itself and separated, 
highlighting outliers. We embarked in a process of loading 
different canonical multivariate datasets into the program 
and exploring them. We used datasets of cereal and car 
brands to explore comparisons and decision-making. We 
used datasets of Titanic shipwreck passengers and 
Pittsburgh census demographics to explore how one might 
generate and test hypotheses about trends in the data.  

As we felt a desire to interact with the data in a way not yet 
written into the program, we implemented new features. 
When an affordance went unused or superseded, we 
removed it. Over many successive passes, we designed two 
primary types of tools based on the affordances we 
explicated earlier: manipulative tools and interrogative 
tools. Manipulative tools alter points’ locations, or move 
them around the sandbox. Interrogative tools change the 
appearance of a point or its interactivity. A mix of these 
tools can be layered to explore multiple dimensions at once, 
and the tools leave traces on the sandbox field so users can 
see what is affecting points.  

In the following sections we describe the physics-based 
tools implemented in Kinetica through two use cases based 
on participants’ explorations during our user study. 

Use Case 1 - Choosing a Car 
Margaret would like a new car, but does not know which 
model to buy. There are many on sale, and each car has a 
dozen or so different columns of statistics, including 
weight, fuel economy, and manufacturer. She loads a 
database of car models into Kinetica, and begins exploring.  

She wants a vehicle that is somewhat powerful but uses 
little fuel. To help answer questions like this, we combined 
physics-based forces with traditional multivariate charts: 
histograms and scatterplots. Histograms pull points to their 
proper place on a number line or categorical division. If 
there are a lot of points in a particular part of the 
distribution, they will bunch up and visually consume more 
area. Scatterplots functioned similarly, pulling points based 
on their values in 2D. We initially had concerns of points 
blocking one another, leading to data being located in an 
incorrect position on a histogram. To help avoid this 
overconstraint, we temporarily disable point collision until 
the data settle down into the proper locations. While this 

 
Figure 2: A user explores car model data using Kinetica. She 

cares about mileage and power, so she placed the points into a 
scatterplot. She doesn’t like wagons, so she used a wall to 

filter. Finally, she added a lens to highlight cheaper vehicles. 

 
Figure 3: A user can draw a scatterplot using two fingers, one 
at each corner. When they place the scatterplot, the points feel 

a pull towards their proper place on the chart. They move 
towards their location, forming clumps if the points are 

concentrated in a certain range of values. 



breaks with the physical model, it makes the resulting 
visualization more accurate and produces a satisfying 
“settling” effect for the points. 

Margaret places a scatterplot that graphs horsepower and 
mileage, watching as the points are pulled into the chart 
(Figure 2). Because she sees the points moving, she has an 
implicit awareness of the action she just made, and can 
attribute the motion of the data to a specific operation 
(Figure 3). She sees a big clump of cars with moderate 
horsepower and mileage as expected, and a longer tail or 
low horsepower, high mileage cars. Because the points 
collide, she can interpret their distribution at a glance, and 
she easily spots the super high efficiency outlier in the 
lower right corner because it is so visually distinct. 

She sees several good candidates in the lower right corner 
of the chart, but she would like to filter hatchbacks cars. For 
filtering actions, one could imagine simply removing the 
points from the screen. However, we wanted to maintain 
users’ mental model of the data landscape, and simply 
removing points entirely would break it, leading to 
uncertainty. Instead, we implemented a semi-permeable 
barrier that could be dragged over points or placed onto the 
field. The points build up against the barrier, showing just 
how much has been filtered (Figure 1). 

We implemented a collision layering system so that points 
that should pass through do not get mired in the pile of 
points backing up against the barrier. Each barrier adds a bit 
to a bitmask, with points permitted to pass the barrier 
assigned a 1. When points collide, they compare their 
bitmasks. If they are the not the same, the points can pass 
through one another. So if there are two barriers, points that 
can pass through both form one “layer” of collisions, points 
that can pass through exclusively one barrier form another 
“layer”, and so forth. This creates some edge cases where 
collision should happen but does not, such as when barriers 
are nested. In the future we would like to incorporate 
regions of space into the algorithm to solve this issue.  

Margaret drags a wall across the scatterplot, picking up 
filtered points as she drags. She finally taps to make the 
wall permanent, separating them off to the right of her 
screen (Figure 2). As she drags, she notices most of the 
points she picks up come from the middle of the 
distribution, leading her to believe most hatchbacks had 
moderate horsepower and efficiency. The process of 
filtering not only moves the points away, but also provides 
insight into relationships between variables and data. 

Margaret also has a budget, so she needs to filter expensive 
cars. However, she doesn’t want to move the points since 
she already know where most of her candidates lay in the 
sandbox. For this situation, we developed a movable lens 
(Figure 2) that highlights points that match a criterion, 
performing an analogous, non-manipulative role to the 
barrier. The lens also can optionally affect the physics 
within its area, only allowing points that meet its criteria to 
accept interactions.  

Finally, Margaret is ready to investigate individual points. 
Because all of the tools she used left traces in the sandbox, 
it is easy for her to backtrack and find the points she 
remembered were interesting candidates. She uses a double 
tap to access a detail view to explore them. We wanted to 
avoid occlusion, so the taps place a static magnification 
glass and show the details of the points within in the glass 
with labels to help pick out the right one. 

Use Case 2 - Titanic Shipwreck 
After watching a movie, Margaret is interested in the 
survivors and victims of the Titanic shipwreck. She is 
curious if the old adage “women and children first” actually 
bears out in the data. To test her hypothesis, she loads the 
data up into Kinetica (see Figure 6). She begins by coloring 
the points based on survival. We implemented separate, 
color-blind friendly scales for both continuous and nominal 
values, and also allow users to scale points’ size by value. 

Margaret now charts the passengers based on gender and 
cabin class. With a quick glance it is obvious more women 
than men survived due to the coloring (Figure 6). To 
investigate how children fared, she draws a semi-permeable 
barrier around the data, which pushes out points whose age 
is less than 18. Because the points still feel a pull to their 
place in the chart, this has the emergent property of keeping 
the filtered points separated into gender/class groups. From 
this new chart she makes the conclusion that indeed most 
children survived, though male children in the third class 
still faced poor odds. 

 
Figure 5: A set of  data points can become a group. 

 The pie chart updates dynamically to show distributions. 

 
Figure 4: Instead of pulling a barrier across points, a user can 
also draw a region that filters points. Here a user has chosen 
to filter points from a region that includes a chart. Once they 
finish drawing, the points are immediately pushed outwards.. 



An issue with large datasets is screen real estate. To 
increase scalability and provide the ability to categorize 
data, we added a grouping function (Figure 5). Users may 
select a region of points or manually choose points to 
incorporate into groups. These groups express the 
characteristics of their constituents, obeying forces as if 
they are a point whose data is the average of their members. 

Gestures and Combinations 
For each of the tools we developed, we initially assigned 
unique gestures and numbers of fingers. For example, to 
create a barrier, the user would put down four fingers along 
the contour, while creating a line histogram required only 
two. This proved cumbersome and confusing. Instead, we 
adopted gestures that used either one or two fingers. Two 
fingers define two control points allowing for a histogram 
between fingers, a bounding box for scatterplots, a barrier 
between fingers, a lens spanning fingers, or a group that 
floats between fingers (to avoid occlusion) that selectively 
consumes points. On the other hand, one finger gives us one 
control point, which allows for drawing actions. This 
permits freehand drawn histograms, drawn areas that 
permit/deny points, drawn lenses, and selecting specific 
points to form a group. 

In testing, we observed several interesting combinations of 
tools. A scatterplot that bunched points into categorical 
clusters could be enhanced with a histogram that pulled 
points into sorted order. Each cluster still felt a pull towards 
its group, but also self-assembled into sorted order within 
the cluster thanks to the influence of the histogram. 
Similarly, drawing an area or barrier that rejected a subset 
of points while a scatterplot was present meant that even the 
filtered points still felt a pull to their proper locations, albeit 

stopped by the barrier. This meant that they still took the 
form of clusters against the barrier. In practice through 
techniques like this we could effectively layer 5 dimensions 
of data within the iPad screen sandbox. 

USER STUDY 
To evaluate Kinetica, we invited participants to use the 
software for 45 minutes in a lab study. As a comparison 
case, we also invited another group of participants to follow 
the same study protocol using Excel rather than the 
application. We considered incorporating exploratory 
visualization suites such as Tableau, Many Eyes, or 
infogr.am, however we were concerned that training would 
consume too much time in comparison to Kinetica, 
especially considering novice computer users. We recruited 
from a campus participant pool, and scheduled sessions 
over the course of two days, one for each technique.  

We solicited samples for 16 participants in each condition, 
however one Kinetica participant did not complete the 
study protocol and their submission was excluded. 15 
participants identified as male, and 16 as female. Their 
average age was 28.9 years. 20 participants reported as 
using statistical software like Excel at least once a month, 
and all but one reported having used spreadsheets to 
analyze data at least once. 11 out of 15 Kinetica users 
reported having used a tablet, though only 5 owned an iPad. 
Excel was the only tool participants identified as a way to 
explore tabular, multi-dimensional data, and all but 2 
participants had used it before. 

At the start of the study participants received either an iPad 
with Kinetica loaded or a preloaded instance of Excel with 
study data present and a populated example chart and pivot 
table. The study first provided five minutes of basic 
training. In the case of Kinetica, participants followed a 
built-in tutorial that goes over each tool with a use case 
example. For the Excel participants, the study observer 
presented two well-viewed YouTube video tutorials on 
Excel and pivot tables/charts. In both conditions study 
participants were informed that their interface actions were 
being logged, and an observer watched during the study.  

After training, participants were asked to look at a dataset 
of 73 different brands of cereal containing nutritional 
information (see Figures 3, 5). They had 10 minutes to use 
their respective tools to answer a set of 5 basic questions of 
increasing difficulty/dimensionality. These ranged from 
“What cereal has the most calories,” to “Of cereals with 
more than 2g of protein and less than 160mg of sodium 
which has the most fat?” This also functioned as additional 
training, and the observer was available to answer questions 
about how to use the software, but not give hints about the 
questions themselves. Participants averaged 3.4 questions 
correct, and there was no difference between conditions. 
This suggests that perhaps neither condition benefitted 
more from training, or that the choice of software did not 
affect participants’ basic statistical ability.  

 
Figure 6: 400 randomly shown passengers are colored by 

whether they survived (blue) or died (red), and are charted by 
cabin class (x) and gender (y). Note many more women (top) 

survived. A filter (green) pushes all passengers under 18 years 
of age to the outside. Because they still feel a pull to their place 

on the chart, they separate into class/gender groups. Note 
third class boys (upper right) still had poor survival odds. 



Following the cereal question period, we asked users to 
pick a car they would like to buy from a dataset of 133 car 
models with specifications. Purchasing decisions often 
require people to balance multiple different kinds of data, 
making them well suited for multivariate visualizations. We 
first asked users to write down the criteria they would use 
for buying a car to make them to think about different  
dimensions of the data. Participants commonly reported 
considering multiple dimensions at once, including cost, 
horsepower, gas mileage, and car body type. Afterwards, 
they used Excel or Kinetica to pore through the data and 
pick a car they liked. All participants were able to identify 
at least one car to buy. Kinetica participants used a variety 
of tools to complete this task. Some plotted points out, then 
used barriers to filter points. Others layered multiple lenses 
onto a field, manually pushing points from criterion to 
criterion. The Excel participants used tools such as charts 
and pivot tables. Every participant considered at least 2 
dimensions of data, with some Kinetica participants 
considering 4 or 5. This suggests that Kinetica might help 
participants consider more dimensions of data at once. We 
will investigate this more quantitatively in the next task. 

In the final 15 minutes, we gave participants a dataset 
containing a random sample of 200 passengers on the 
Titanic. Since they now had experience with the software, 
we gave them an open ended prompt. There were to make 
as many findings as they could in the time limit using the 
data. For instance, they might identify who the youngest 
passenger was, or see a relationship between cabin class 
and passenger survival. Excel participants made on average 
5.1 findings, and Kinetica participants made on average 5.5 
findings (the difference is not significant). The Kinetica 
participants’ findings generally encoded more dimensions 
per finding than Excel participants (M:1.74 vs. M:1.38; 
repeated measures F(1,164)=17.67, p<0.001). 

We were especially interested in whether the nature of 
participants’ findings would differ by condition. In 
particular, we hypothesized that physics-based affordances 
would grant participants a more holistic understanding of 
the data, increasing their awareness of trends and 
distributions and enabling them to layer and investigate 
multiple dimensions at once. To investigate this we had two 
coders classify each of the findings made by participants 

into five types: point findings that discussed a particular 
row of data (youngest passenger), statistical findings that 
gave summary statistics (mean age), descriptions that 
capture general trends (less than half of the people lived), 
comparisons between categories or groups (more third class 
passengers died), and relationships between dimensions 
(the older you were, the more likely you were in a high 
class cabin). Coders were blind to condition and had high 
interrater reliability (N=186, kappa=0.96).  

Interestingly, Kinetica users made far more descriptive, 
comparative, and relationship findings than their Excel 
peers whom almost always made point or statistical 
findings (Figure 7; c2(5)=31.3, p<0.001). Thus while they 
do not make as many quantitative observations, they 
demonstrate a greater awareness of distribution and 
multidimensional trends. This suggests that physics-based 
affordances may be helping users build a more holistic 
understanding of data. 

Qualitative Responses 
The qualitative responses during the survey suggest a 
similar trend. On 7-point Likert scales, Kinetica participants 
reported that the tool was fairly easy to learn (M:5.53), 
made it easy to explore data (M:6.0), was fun to use 
(M:6.07), was fairly easy to use (M:5.07), and that they 
would use it again (M:6.0).  They identified the scatterplots 
and lenses as especially useful (M:6.2, M:6.47), and groups 
as less useful (M:4.93), perhaps because they broke with 
the force-based tools that comprised most of the interface 
by absorbing points rather than moving/altering them. 

After the study, a participant reported that Kinetica was, 
“… so much better than Excel. I can see when my sort isn't 
quite right because a point will be where it shouldn't be. It's 
visual.” This points to both the visual memory and process 
benefits of physics affordances. Another reported, “I like it 
'cuz you could just compare things because they were right 
there. You didn't have to look between rows or anything.” 
In written free response sections, a participant wrote “The 
scatterplot allows you to visualize your most important 
priorities [then] …The lens helps you narrow down scope 
& they can be layered on top of each other,” identifying 
how the layering of physics constraints matched their 
internal exploration process. Other participants identified 
ludic elements, stating Kinetica “allows you to "play" 
around with the data,” “makes seeing the data fun and 
interesting,” and “fluidity made it engaging.” One 
participant reacted strongly after the car portion of the 
study, saying aloud “You can [use Kinetica to]… make 
really informative decisions on what you purchase in your 
everyday life.” 

Participants also had some issues using Kinetica. One 
participant complained that it was hard to get exact 
numbers for things. While the interface was well suited for 
qualitative findings, the participant had to tap three times to 
see numeric details for a point. Interface limitations did not 
help, as configuration sliders could not always provide 

 
Figure 7: Coded Titanic findings made during user studies 



enough granularity to participants so that they could set 
exact filtering criteria they wanted for lenses and barriers. 
Kinetica did not have an undo action implemented, and 
some participants complained that they wanted to go back, 
but had already moved data around since then. This raises 
an interesting question of what undo operations mean in 
this space. Kinetica also used basic on-screen controls 
rather than gestures (see buttons in Figure 2). This meant 
that they sometimes got in the way, annoying users. Of all 
the tools, participants voiced the magnet as being the least 
useful, primarily because its one-dimensional force was 
subsumed by histogram charts whose behavior was clearer. 

GENERATIVE FRAMEWORK 
Our initial work in Kinetica points to a fertile new area for 
exploration in data visualization. Physics-based 
visualization affordances make use of the inherent expertise 
users have based on their experiences in the everyday world 
in order to help them develop an understanding of data. 
These techniques are different from traditional visualization 
approaches, and, in light of users’ desire at times for more 
familiar controls, may work well in concert. However, 
because they are different from traditional approaches, it is 
not always easy or intuitive to create new interactions. 

As we explored physics-based visualization techniques in 
Kinetica, we developed a framework to generate potential 
affordances. From our development, we propose the 
following set of physics-based affordance primitives to 
enhance interactive multivariate data visualization: 

• Data are represented as physical points that have 
associated physical properties that correspond to their 
values in different dimensions 

• Data occupy a sandbox that contains them and allows 
for interaction. Interactions with the sandbox change the 

physical arrangement of the data, and leave traces of 
their activities. 

• The user can employ forces to act on physical points 
either independently or as a result of their unique data. 
For instance, a magnet may repulse points with low 
values in a particular dimension. 

• The user may use layout tools to force points into strict, 
meaningful locations, breaking with the physics 
metaphor when necessary (such as when allowing points 
to pass over or under others to avoid being trapped). 

• The user can mutate points, for instance combining 
multiple points into one group so as to observe more 
points at once or see larger trends. 

• The user may place barriers that block or selectively 
block points based on criteria. 

• The user can employ filters to selectively include or 
exclude points to help avoid overload or choose only a 
small subset of interest. 

• The user may use queries and overlays to change the 
appearance or behavior of points on the screen. 

We imagine these affordances could work in a variety of 
contexts and situations. They could be used in 2D, which 
may be easier to interact with (as Sedlmair, Munzner, and 
Tory [29] suggest in the context of scatterplots), or in 3D 
where there is a richer space of interactions and there is 
room for more dimensions. Likewise, they can function 
using a keyboard, mouse or multi-touch. 

Furthermore, these primitives could be combined to 
generate a much richer set of potential physics-based 
affordances. Mixing these different techniques together can 
provoke new ways to augment data visualizations with 
physics. Table 1 provides some examples of different tools 
that can come out of a combinatorial brainstorming on these 
primitives. For instance, combining a barrier that blocks 

 
Table 1: Generative framework that combines different physics-based affordances to generate new tools/interactions 



points with a selective filter could generate Kinetica’s 
permeable barrier. Combining forces with a scatterplot 
layout could create a force-based plot that pulls points to 
their proper location, and might work in concert with other 
barriers and forces. We found this framework useful for 
building the specific physics-based interaction methods we 
instantiated into Kinetica. We hope it will be useful for 
future researchers and practitioners in generating even more 
interaction types that can promote effective physics-based 
interactions with data. 

DISCUSSION AND LIMITATIONS 
In this paper we introduced a general set of physics-based 
affordances for multivariate data visualization. These 
affordances come with both benefits and costs. For 
example, on one hand, tools that are easy for users to intuit 
and interpret might make exploring data easier. On the 
other hand, constraint-based systems may produce output 
whose causes are difficult to interpret. In this section we 
explore these benefits and costs through the lens of Kinetica 
and more generally, and describe future work that may help 
to make physics-based affordances more versatile. 

Potential Limitations 
Scalability. Because of the iPad’s limited computational 
resources and screen real estate, it is hard to analyze more 
than 500 points without either the rendering being sluggish 
or the screen filling. While making points smaller and 
simpler helps, the device itself is a limitation. This hearkens 
back to the more general scalability limitation of physics-
based affordances: some devices, sizes, and interfaces are 
more suited to certain amounts of data and ways of 
interacting, and cognitive or attentional resources may be 
constrained to smaller amounts of data onscreen. While it 
might only be possible to render 200-500 points on an off-
the-shelf iOS, Windows, or Android tablet, those 200 points 
could be abstract representations of thousands of points. 
Users might zoom in and out of different levels of detail (or 
infinite levels of detail [4]), especially given systems that 
help users make approximate queries and abstractions [8]. 
As devices grow in power and can render more points, this 
need may diminish, though the constraints of human visual 
attention and sensemaking might still suggest limiting the 
number of points shown. 

Another possibility is to use different devices for different 
purposes. While a large surface may display all points, a 
smaller device in tandem might help users explore a smaller 
subset using more detail-oriented interactions. The large- 
and small-scale tools may not even need to share the same 
tool set because of their different needs. Instead of using 
differently sized displays, one might also employ 
collaboration. One user might take one section of a larger 
continuous physics environment, handling a certain kind of 
points, while another manages a different area. 

Effect attribution. Participants in the study also expressed 
several situations where they had a hard time attributing 
effects. If they placed too many force-based plots on the 

screen, it became a mess of points that was hard to 
interpret. This is a general problem inherent in physics-
based affordances. As more constraints and forces interact 
in the sandbox, it becomes harder to attribute them to 
specific causes. In the case of Kinetica, participants quickly 
found a solution: using the visual traces of what forces are 
currently in use to backtrack until the sandbox made sense 
again. It is possible that more feedback could help solve 
this issue, but could necessitate a tradeoff with increased 
clutter. For example, in a case where three forces are 
interacting on a small set of points all at once, perhaps each 
force could produce waves or lines of force that indicate 
their effects on the point. 

Expert usability and overload. A few participants voiced 
concerns similar to Drucker et al. [6], where their expertise 
and familiarity with traditional WIMP statistical tools made 
them want quantitative tools like means or the ability to 
draw traditional bar charts. This is also suggested by Excel 
participants’ ability to make more point-specific or 
quantitative findings compared to Kinetica. In principle 
such statistics could be added to a physics-based 
visualization, for example in a panel, though again tradeoffs 
in terms of training and screen real estate may be incurred.  

Overconstraining. One risk in any constraint-based system 
is that points become trapped by the constraints such that 
the visualization does not faithfully represent the 
underlying relationships in the data. We tried very hard to 
eliminate such situations during the design of Kinetica. We 
introduced measures that broke with physical consistency 
as needed, allowing points to pass through one another to 
avoid bunching up at permeable barriers. If points are being 
pulled into a sorted order, then we once again disable 
collision temporarily to prevent mis-sorts. While such 
breaks with physical models could reduce the consistency 
of the visualization interactions, they represent a tradeoff 
between usability and data faithfulness. This is a general 
problem that may affect physics-based affordances as they 
are developed further, exacerbated by the difficulty of 
predicting what minima or overconstrained situations might 
occur in practice. 

Potential Benefits 
Minimal training. Participants approached our novel 
interface, some never having used a touch device or tablet 
before, and were able within ten minutes to explore and 
generate findings from data they had never seen before. As 
Jacob et al. [18] mention, users already have an intuitive 
awareness of physics and their surrounding environment. 
As a result, many of these primitive affordances are in a 
sense already “trained” [27]. Users know that a magnet 
pulls objects towards it even if they do not know about 
magnetic forces and inverse square decay. This minimal 
barrier to entry surprised participants. One suggested that 
these approaches may be useful for teaching data literacy to 
young students or visual learners. 



Outlier detection. Participants regularly spotted outliers in 
the data because they were in unusual locations, had 
different colors than the points near them, or moved unlike 
the rest of their nearby points. These properties emerged out 
of their general use of physics-based tools, and spatial 
correlations and groupings often make identifying outliers 
easier [14]. Participants felt encouraged to explore these 
points and try and explain why they were different, 
generating stories and expressing surprise. 

Awareness of distribution. Kinetica participants made more 
descriptive and comparative findings, describing amounts 
of points and using words like more or less. Because data in 
a physics-based visualization are treated as physical objects, 
they can bunch up and form salient visual patterns. Imagine 
a histogram or scatterplot where points collide with each 
other (see Figure 2). Places where there is higher density of 
data are inherently more bunched together. This fits users’ 
intuitions, and gives an implicit, visual depiction of data 
distribution without a need to chart frequencies. However, 
this qualitative understanding may come at the expense of 
the quantitative, point-by-point understanding that Excel 
can provide. A hybrid of these approaches, with more 
quantitative analytical techniques stepping in when a user is 
ready to focus on a small subset of data might give users a 
satisfying middle ground. 

Understanding process. Kinetica participants also cited a 
better understanding of process in their qualitative 
responses. They mentioned fluidity and how everything was 
“right there” when they needed it on the screen. When 
participants used Kinetica to explore their data, the physics 
interactions unfolded in front of them, with points moving 
to their proper places on charts and gathering behind 
permeable barriers. These small changes, over time, helped 
them to interpret the end state of an operation and gave 
them new ideas for future hypotheses to explore.  This may 
be a more general property of physics-based affordances, 
since as groups of points move together and possibly share 
visual features, people can gain a summary/qualitative 
understanding of their data [14]. 

Augmenting working memory. Participants in the Kinetica 
case also generated findings that made use of more 
dimensions than their Excel peers. This may be because of 
an ability to consider and keep track of more dimensions. 
As a user combines interactions in the process of exploring 
multivariate data, they leave traces of their explorations 
encoded onto the sandbox. For example, if a user uses a 
barrier to separate points based on one dimension, then the 
barrier remains as visual element, and the points are 
physically separated into two different areas of the sandbox. 
Because each of the tools leaves traces in the sandbox (see 
Figures 2, 3), it is easy to trace back what sorts of 
dimensions are at play. Further, because the user has been 
slowly moving points and arranging the field, the sandbox 
encodes contextual cues for the user which can improve 

their memory of the current state of the data and their past 
actions [5].  

Future Work 
Kinetica only took a small slice of the physics-based 
affordances we generated using our framework. It could 
make use of many more, perhaps solving some user 
concerns in the process. In its current state, Kinetica does 
not do any layout computations. Everything is force 
directed, which runs the risk of local minima or 
overconstrained blocking. Layout algorithms that put points 
into predefined, semantically meaningful configurations 
might help users make sense of new data and also help 
solve some overload. For instance, points could be forced 
into clusters decided by k-means clustering, or pushed into 
tabular rows that are easy to manipulate along side a richer 
query language. Other than just filtering points by a simple 
< / = / > criterion, barriers might employ complex logic or 
themselves push points that pass through into layouts. 

More generally, physics-based affordances are not an end-
all solution for multivariate data visualization. In Kinetica 
we mixed in traditional scatterplots because they were so 
familiar and so useful. Such affordances probably work best 
in a hybrid situation. If there are millions of points, maybe a 
WIMP technique on a computer is best for a first pass. Even 
within a system like Kinetica there also may be a need for 
traditional visualizations like parallel coordinates and plots. 
While this may break the consistency of the data-to-point 
physics model, it may improve user capabilities, especially 
if they already have expertise.  

CONCLUSION 
In this paper we contributed an outline of physics-based 
affordances to augment multivariate data visualization. 
Using this outline, we developed a generative framework 
for ideating new interactions and affordances in this space. 
We instantiated some of these different affordances in the 
form of an iPad application, and conducted a comparative 
study between the physics-based visualization tool and a 
traditional WIMP spreadsheet tool with charts and pivot 
tables. In general the physics-based tool was more 
satisfying for participants, and led them to a more holistic 
understanding of the data they were exploring. Although 
this work is only one step towards a future of enhanced data 
interaction, we hope that in the future an interdisciplinary 
group of interface, information visualization, human 
factors, and other researchers will generate new and 
exciting approaches for exploring data that harness the 
growing tide of new devices and new ways of interacting. 
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