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ABSTRACT 
Detecting and correcting low quality submissions in crowd-
sourcing tasks is an important challenge. Prior work has 
primarily focused on worker outcomes or reputation, using 
approaches such as agreement across workers or with a 
gold standard to evaluate quality. We propose an alterna-
tive and complementary technique that focuses on the way 
workers work rather than the products they produce. Our 
technique captures behavioral traces from online crowd 
workers and uses them to predict outcome measures such 
quality, errors, and the likelihood of cheating. We evaluate 
the effectiveness of the approach across three contexts in-
cluding classification, generation, and comprehension 
tasks. The results indicate that we can build predictive 
models of task performance based on behavioral traces 
alone, and that these models generalize to related tasks. 
Finally, we discuss limitations and extensions of the ap-
proach. 
ACM Classification: H5.2 Information interfaces and pres-
entation (e.g., HCI) --- User Interfaces: Evaluation / meth-
odology, Theory Methods; 
General terms:  Human Factors, Measurement 
Keywords: Crowdsourcing, Mechanical Turk, Event Log-
ging, User Logging, User Behavior, Performance 

INTRODUCTION 
Crowdsourcing markets like Amazon’s Mechanical Turk 
(MTurk) allow users to rapidly disseminate large quantities 
of small tasks to a large pool of willing workers. This em-
powers researchers to assemble large datasets of human 
labeled corpora, corporations to outsource simple data 
processing, and even one day to have individuals utilize 
crowdworkers to complete tasks in their own word proces-
sors [1, 2]. The ability to quickly and effectively reach a 
willing microtask work force has the potential to change 
the way work is done in society. 
However, the distributed nature of such markets can pose 

challenges for employers. Because tasks are typically 
small, short, and high volume, workers can expend minimal 
effort or even cheat on jobs as their output often blends in 
with the crowd. This is especially true for subjective tasks 
or those with multiple valid answers, which can attract 
cheating rates of over 30% [15]. Adding to this issue is the 
limited reputation system in MTurk which only tracks the 
total percentage of work a worker has had accepted; cheat-
ers can slip through and even maintain high reputations by 
accepting tasks they are unlikely to get rejected for. Even if 
workers are not cheating, there can be high variability in 
the quality of their work due to differences in effort or skill 
[2]. 
Significant research efforts have been made to develop 
ways to detect and correct for low quality work in order to 
improve the overall quality of the resulting data. Research-
ers have proposed a variety of approaches to address this 
issue, ranging from using gold standards to post-hoc 
weighting based on worker agreement or reputation [2, 4, 
12]. Most of these approaches rely on a single aspect of the 
workflow in human computation markets: the end products. 
With only the end products of the work process and some 
minimal reputation metrics about the workers involved, 
employers must make difficult tradeoffs depending on the 
quality control method they use. For example, methods 
based on worker agreement rely on multiple redundant 
worker judgments, while gold standards require some per-
centage of labeled data. 
We present an alternative and complementary technique for 
evaluating task performance on crowdsourcing markets: 
examining the way the workers work, rather than the prod-
ucts they produce. The work process itself may provide 
information as to the effort, skills, and behavior of the 
worker which may be useful for predicting their output 
quality. For example, imagine two different workers tasked 
with tagging an image. The lazy worker, after accepting the 
task, may immediately scroll to the text fields, type their 
first tag, tab to the second field, and without delay enter 
their second tag. The conscientious worker, after accepting 
the task, may pause while inspecting the image, scroll to 
the text fields, type their first tag, scroll back to the image, 
pause again, and then type their second tag. An employer 
presented only with the behavioral patterns of each worker 
might be able to tell the conscientious worker from the lazy 
worker, and weight their judgments accordingly.  
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In this paper we examine whether crowdworkers’ behav-
ioral traces as they complete work can actually be used to 
predict the quality of their final product. We propose a 
technique we call task fingerprinting to collect and analyze 
such behavioral traces in online task markets (though the 
technique may generalize to other settings as well). We 
describe a prototype implementation of task fingerprinting 
on the Amazon Mechanical Turk market, and test its effi-
cacy in three different task contexts. Our results demon-
strate how workers’ behavioral traces can be used to make 
inferences about their task performance, including identify-
ing cheaters, estimating output quality, and predicting er-
rors. Finally, we discuss some limitations and extensions of 
the task fingerprinting approach, and explore applications 
beyond the crowdsourcing context. 

TASK FINGERPRINTING 
A task involves a worker performing some actions on an 
input (typically provided by the employer) resulting in 
some output. The input might be an image to tag, a docu-
ment to summarize, or even just a set of guidelines for open 
response. Using this input, the worker engages in a series 
of cognitive and motor actions that result in changes in 
their web browser (e.g., mouse movements, scrolling, key-
strokes) and produces an end product for the requester. This 
process can be represented as:      

fworker(inputtask) = outputtask, worker 
where the input is given by the employer, some sequence of 
cognitive and motor actions are performed by the worker 
(fworker) on the input, generating some output that is con-
sumed by the employer. Common methods for quality con-
trol alter the design of the input or evaluate the output side 
of the function, since the cognitive effort and skills of the 
worker (in f) are not directly observable. Yet, if evaluation 
based on the process of generating results were effective, it 
would result in a number of benefits. In contrast to gold 
standard approaches, one could make inferences about the 
quality of the output even without labeled data; or even 
having to inspect the output at all. And unlike output 
agreement approaches, predictions of quality could be 
made without many redundant judgments from different 
workers. Furthermore, assuming workers are consistent in 
their behaviors across tasks (which we examine in more 
detail later), we could use information about their work 
process on one task to make inferences about their work on 
other tasks. For example, we could identify workers that 
ignore the guidelines of one task so that we could flag all of 
their work across all tasks for closer examination. 
We propose task fingerprinting as a means to capture the 
process that crowdworkers use to complete a task, as em-
bodied by their interactions with their computer interface. 
By logging what workers do in their interface while work-
ing on the task, we can develop a quantitative description 
of their process which will allow us to compare workers 
and evaluate end products, make inferences about worker 
cognition, and determine how effective a worker pool is at 
a given task and set of data. 

Task fingerprints can assume a variety of structures to 
quantitatively describe what workers do. In their raw form, 
they are sequential logs of interface events; what the work-
ers did, and when. The sequences encode valuable informa-
tion, such as the order of operations, time delays between 
actions, and patterns of labor. Refining this raw data, we 
can gather summary statistical data, such as counts of dif-
ferent actions or the occurrence of outlier behaviors like 
copy-pasting, that can be used to compare workers. Ma-
chine learning based on the input and fingerprint can be 
used to infer characteristics of the output such as its prob-
able quality or the likelihood that the worker was cheating. 
Visualization of the fingerprints might enable human out-
lier and pattern detection in large sets of workers.  

RELATED WORK 
Our work is related both to evaluation efforts in crowd-
sourcing and to user event logging. 

Evaluating Crowdsourcing Outcomes 
There are at least two general approaches researchers have 
explored for obtaining good data from crowdworkers. Pre-
task approaches focus on designing tasks so that they are 
resistant to poor responses (e.g., von Ahn and Dabbish). 
For example, in the context of MTurk, Kittur et al. propose 
that tasks be designed in such a way that performing poorly 
or cheating is as costly as contributing in good-faith [15]. 
Other approaches include promoting intrinsical motivation 
[18],  splitting larger tasks into small, fault-tolerant sub-
tasks [1, 19], incorporating randomness in cooperative task 
designs [23], financial manipulation and tweaking outcome 
measures [10, 16]. While these can be effective strategies, 
they require that tasks be specially tailored for the ap-
proach.  
Other researchers address the low quality data problem 
using a post-hoc approach, controlling or correcting for 
workers’ outputs. One common way is to use validated 
gold standard data to sort out good workers from bad [2, 5]. 
However gold standard data is not always available or ap-
plicable, as is the case in some generative tasks like tagging 
and summarization. Other work calculates relationships 
between worker answers or identifies erroneous workers 
using trends to reduce bias [2, 4, 12, 20]. A congruent ap-
proach is to have workers rate other workers in a verifica-
tion step [1]. While these techniques can be effective, they 
also have drawbacks; for example, approaches based on 
worker agreement require a number of redundant judg-
ments, may be susceptible to gaming or majority effects, 
and may not work well when there are a broad range of 
valid answers or most answers are unique. 
Our methodology of harnessing workers’ implicit behav-
iors provides a number of advantages over the above ap-
proaches. First, models of user behavior can generalize 
across tasks. Second, collecting additional data about the 
worker’s behavior has the potential to improve predictions 
beyond the theoretical limits of just using a worker’s iden-
tity and their end products. Third, our method doesn’t re-
quire knowledge of ‘correct’ answers, and supports having 



 

   

a range of valid answers. Fourth, it can scale down to a 
small worker pool, making judgments even about individ-
ual workers. 
On the other hand, our technique falls victim to some of the 
same problems that affect post-hoc analysis, including ma-
jority effects and automated task completers. The method 
can be improved by combining it with other techniques 
(e.g. including gold standard data), and we will discuss 
additional ways to improve our technique in the limitations 
section.  

User Event Logging 
HCI researchers have spent considerable effort on captur-
ing and analyzing event logs, primarily for the purposes of 
evaluating usability [9]. Kim et al. used event logs from 
video games to remove player frustrations by identifying 
game components that were causing trouble [14]. Chi et al. 
used simulated logs to visualize the usability of web pages 
[3]. Ivory and Hearst evaluated a large number of automa-
tion systems, concluding that although automated logging 
is still not widely implemented, it has cost benefits and 
allows for quick design comparisons [13].  
Event logs have also been used to predict cognitive and 
user outcomes, for example detecting gender differences in 
problem solving [6], survey logging [21], predicting age 
and cognitive impairment [11], and skill levels of users for 
adaptive interfaces, and estimating the complexity of tasks 
[7, 17].  
Other research applies event logs to process mining. Rather 
than log small granular actions, workflow and process min-
ing examines logs of larger transactions. These systems 
allow users to model behavioral patterns among workers 
and determine worker processes necessary to complete cer-
tain tasks [22].  
The previous findings indicate that not only do user event 
logs encode information about performance, but also about 
skill and user behavior. Our work extends this research to 
examine the feasibility of using user event logs in a crowd-
sourcing context across different types of tasks, with a fo-
cus not on the usability of the system but instead on pre-
dicting the quality of task outcomes. 

IMPLEMENTATION 
We prototyped a task fingerprinting system that uses Java-
script and the jQuery library to monitor user activity on 
crowdsourcing market web pages. Each time the user clicks 
within the page, presses a key, scrolls, changes focus, or 
moves their mouse, an event is triggered and recorded to a 
list along with a unique user hash, a page hash, event in-

formation such as mouse position or which key pressed, 
and a timestamp (to the millisecond).  After completing the 
task, the user uploads the collected log to a server through 
an opt-in button. The server uses the Django web frame-
work to record each event in the usage data as a row in an 
SQLite database for later analysis. The system is portable 
and able to log users on any website, however the database 
must be hosted by the web site, as cross site scripting limi-
tations make uploading log data very difficult otherwise. 
Event logs are discretized on the server to facilitate analy-
sis, with sequences of scrolling and mouse movement en-
coded into individual events for each 200 pixels total 
moved or scrolled. We found it useful to make two refine-
ments to the above approach. First, repeated sequential 
events, such as mouse movements or scrolling, are encoded 
into individual events with aggregate information (total 
mouse movement from start to end, total scrolled position); 
this avoids simple “spoofing” attacks such as extended 
scrolling or mouse movement without other activity (Figure 
1). Second, discretization may miss significant delay in-
formation (for example, if the user scrolls, then reads with-
out moving their mouse, then scrolls again). To address 
this, we use delay events to encode temporal information 
into the log: if a user waits longer than a specific time 
threshold (here we use 200 milliseconds) a delay event is 
encoded, with further delay events added for every 200 
milliseconds the user waits.  
In addition, we also collect information that characterizes 
the user’s behavior in a holistic sense (see Table 1). Firstly, 
we generate summary data, such as the total time the sys-
tem was logging activity, the counts of different types of 
events, the total amount of scrolling and mouse movement, 
and the lengths of the raw and collapsed event logs. These 
allow us to get a general sense of what a user is doing in the 
environment. Secondly, we collect more specific informa-
tion about the events, such as the number of time certain 
special keys like tab and backspace were used, the number 
of times a user pastes text, a total count of the number of 
unique keys a user presses, and how many form fields were 
accessed. This information can help expose users with es-
pecially unique behavioral patterns. Finally, we collect 
information about the delays the user introduces into their 
work. We determine how long the user spent ‘off focus’ 
from the page, the cumulative time they spent before they 
started typing in a form field, and the cumulative time they 
spent between keystrokes in a form field. We can use these 
features to make higher level judgments about user delib-
eration and attention in tasks. For crowdsourcing markets 
such as Mechanical Turk, we incorporate the time the mar-

Diligent S191px M33x52y CTag1 D1.1s KOUTSIDE S=198px D1.8s S89px CTag2 KPLAYING S40px CSubmit 

Lazy S185px M44x51y CTag1 KMAN<tab> KDOG S50px D5.3s CSubmit 
 

S=ScrollAmount M=Mouse MovementDistance D=DelayTimePassed C=ClickTarget K=KeypressKey 

Figure 1: Example refined event logs for tagging an image with both ʻlazyʼ and ʻdiligentʼ workers. The lazy worker 
quickly writes simplistic tags, while the diligent worker takes time to think and check the source image between tags. 



 

   

ket reports they spent on the task, and their unique worker 
identification. 
Our implementation exposed several limitations in event 
logging using Javascript. Foremost, cross-browser com-
patibility, despite many standardization efforts, remains 
poor. Some browsers accurately report when the user focus 
changes from a window, others provide no feedback what-
soever. Some browsers report keystrokes accurately, others 
provide questionable information about special characters. 
Likewise, browser extensions that prevent JavaScript from 
running, such as NoScript, completely inhibit logging. La-
tency is also an issue, as sending events as they occur to the 
server proved to be less reliable than a one-shot upload at 
the end of the task. As implemented presently, there is little 
to no latency in our logging scheme since the user data is 
uploaded at the end of the task. In future work we will ex-
plore more reliable means of periodic updating. Finally, 
user logging has privacy implications, as such a script can 
send sensitive user data without any signals to the user. Our 
decision to use an opt-in approach addressed both the la-
tency and privacy issues in a way that fit the Mechanical 
Turk market; however the technique does not require this 
be the case. 

EXPLORATION AND EVALUATION 
To evaluate the utility of task fingerprinting, we examined 
collections of workers performing a series of tasks on 
Amazon’s Mechanical Turk crowdsourcing market. Me-
chanical Turk is a rich arena for studying tasks, as workers 
are willing and able to complete jobs ranging from the 
minute, like identifying parts of speech, to the complex, 
like comprehending a passage or composing a summary. 
Further, there are enough workers on Mechanical Turk that 
one is likely to get a good sample of worker behaviors for a 
given task [15, 20].  
We conducted three different experiments on Mechanical 
Turk designed to highlight a variety of cognitive tasks that 
crowdworkers may do and the applications task fingerprint-
ing has in such work. Our first experiment has Turkers 
identify words that are nouns in a list. This task relies on 
simple word recognition, and can therefore be performed 
rapidly and workers can complete multiple tasks in quick 
succession. We can evaluate the results simply by counting 
labeling errors. Our second experiment has Turkers gener-
ate keyword tags for four different images. Since this task 
is generative, there is a large spectrum of results that a 
worker can produce, which we evaluate by both the quan-
tity of tags and the descriptive value of the tags. Our final 
experiment has Turkers read a passage and answer reading 
comprehension questions. The evaluation, based on correct 
answers, provides insight into the worker’s understanding 
of the text. For each experiment we solicit workers on Me-
chanical Turk, capture their behavior using our prototype, 
validate that our observations align with their end products, 
develop a task fingerprint using our observations, and apply 
the task fingerprint to the evaluation of the task using 
Weka, a machine learning toolkit [8].  

Classification Tasks 
We had Mechanical Turk workers perform data labeling, a 
type of task often used on human computation markets. 
Workers were presented with a HIT (Human Intelligence 
Task) that presented them with a list of 40 words and asked 
them to check boxes for words that were nouns and leave 
non-nouns unchecked. On average, each HIT had 11 nouns 
and 29 verbs, adjectives, or adverbs between 4 and 9 char-
acters selected from the Moby and Wordnet databases in-
tersected with an English as a second language dictionary 
so as to choose easier words. Payment was set at $0.05, 
somewhat high for a task of its magnitude, in order to en-
courage cheating as well as unscrupulous behavior. We 

General Information 
Raw Log Length Assignment ID 

Refined Log Length Worker ID 
Discretized Log Length  

  
Timing 

Total Task Time Before Typing Delay 
On Focus Time Within Typing Delay 

Recorded Time Disparity  
  

Action Counts 
Total Clicks Total Keypresses 

Total Mouse Movement Total Pastes 
Total Scrolled Pixels Total Tabs 
Total Fields Accessed Total Backspaces 
Total Focus Changes Count of Unique Characters 

Table 1: Aggregate data collected by the prototype 

Task Input Type Submissions Evaluation Measures 

Classification  185 Noun identification accuracy 

Content Generation 
 

114 Rated quality, 'cheated' label 

Comprehension  63 Question answering accuracy  
Table 2: Experimental conditions 



 

   

solicited a total of 5 instances of each of 40 different label-
ing tasks, totaling 200 requests. Of those 200 requests, 15 
were excluded because their browsers did not relay event 
logs. 21 unique participants generated the remaining 185 
points in this task.   
We evaluated participants based on the number of ‘correct’ 
answers they gave, where a correct answer meant checking 
a noun and leaving a non-noun unchecked. On average 
people correctly classified 83% of words (SD=14.1), com-
pared to an average of 73% if they had left the form com-
pletely blank. Because the participant average is below 
even what would be the case if they only checked half the 
nouns and left the rest blank (86%), it is likely that a fair 
percentage of workers put forward a minimum amount of 
effort.  
Results: Task Time 
While task time can be a useful metric for identifying non-
compliant workers, as researchers using Mechanical Turk 
are well aware, task times reported by the system can be 
dramatically different from the actual time a worker spent 
on completing a task [15]. Workers may often accept mul-
tiple tasks and leave them open while finishing others. Our 
data enables us to examine how large the discrepancy is 
between reported and actual work time for tasks. Examin-
ing all of the worker logs, which averaged 32.7 refined 
events, we discover that workers spent on average 1 min-
ute, 13 seconds completing the task and clicked on check-
boxes 9.5 times. The time of task completion recorded by 
Mechanical Turk’s system was off by an average of 21.1 
seconds from recorded on-task time. As shown in Figure 2, 
this disparity is unevenly distributed, with a few tasks ac-
cepted but not worked on for a long time period. Interest-
ingly, tasks with high reported vs. actual time discrepancies 
may also tend to be of lower quality. In our later reading 
comprehension task, higher time disparity was marginally 
correlated with more errors (F(1,62) = 3.28, p=0.075)  This 
suggests that although the raw reported time from Me-
chanical Turk may not be dependable as a measure of effort 
(as workers may accept and queue tasks), using the dispar-
ity between reported and actual time may actually offer 
some information about the quality of the work. 
Results: Accuracy 
We used machine learning to predict our quantitative eval-
uation of the labels each Turker provided using the task 
fingerprints. After removing non-essential features such as 
keyboard presses and delays (since there was no typing),  
First, we investigated a binary prediction task, using a 
pass/fail threshold of 80% (where “pass” corresponds to a 
generous threshold of identifying 3 nouns accurately with 
no non-nouns checked; 69 of 185 participants fail this mile-
stone and 116 pass). This threshold also is consistent with 
the 30% cheating ratio found by other crowdsourcing re-
searchers [1, 15]. After identifying the most predictive fea-
tures, we used Weka to generate decision trees to predict 

our pass/fail classification1. We limited the number of fea-
tures used in these trees to maximize generality and avoid 
overfitting. Our initial tree utilized the number of clicks, 
checkboxes accessed, and the difference between the Turk 
recorded time and our event log time. Using 10-fold cross-
validation, the model predicted our pass/fail evaluation for 
the 185 data points with 83.2% accuracy, a kappa of 0.608, 
and an F-measure of 0.823. This suggests such a model 
could highlight points of interest for exclusion or human 
inspection. However, since many of the checkboxes were 
correct in their default unchecked form, we considered the 
possibility that the number of fields accessed may be too 
directly tied to our choice of leaving nouns in the minority. 
Removing those fields, we generated a decision tree that 
utilized the total amount a user scrolls and moves the 
mouse as well as the disparity between recorded task times. 
This model, using only summary statistics about the user’s 
behavior, classified the points with 78.3% accuracy, a 
kappa of 0.534, and an F-measure of .784, reinforcing our 
suggestion that even with limited fingerprint data, a model 
could highlight questionable points in a large sample of end 
products. 
Beyond classifying workers’ products as suspect, we inves-
tigated whether we could predict the raw accuracy score of 
a given worker using only their fingerprint. Using support 
vector regression, we trained models from the fingerprints 
and accuracy scores. Under 10-fold cross-validation, our 
model significantly correlated with the actual accuracies we 
recorded (r=0.3289, p<0.001). This suggests the model may 
be suitable for identifying high quality work in a large sam-
ple of completed submissions. By incorporating worker 
                                                             
1 We initially tested our data with both decision trees and SVMs 

and found that they both provided similarly high levels of accu-
racy. We chose decision trees because their small set of features 
is easy to interpret and describe with respect to user behavior. 

 

Figure 2: Time disparity between our logged ʻon 
taskʼ time and MTurkʼs recorded task time (in sec-
onds) on the word classification task. 



 

   

identity we further improved the model, boosting the corre-
lation higher (r=0.8926, p<0.001). Similarly, adding worker 
identity and predicting a pass/fail score using a decision 
tree without clicks classifies better than our previous classi-
fier, having an accuracy of 85.4%, a kappa of 0.681, and an 
F-measure of 0.856. Examining the trees, it is clear that 
accounting for intra-worker variance has significant bene-
fits, since workers seem to produce similar quality work 
across multiple iterations of the task. 
In summary, we found that task fingerprinting is able to 
predict the outcomes of simple labeling tasks in Mechanical 
Turk, even when cheating and low-quality results represent 
a large proportion of the data. Moreover, limiting the task 
fingerprint to simple features such as cumulative mouse 
movement and scrolling is effective. However, human 
computation tasks are not limited to binary labeling. Next 
we examine a more complex task with a different set of 
evaluation criteria. 

Content Generation Tasks 
To investigate content generation HITs on Mechanical 
Turk, we had Turkers supply three to five keyword tags for 
each of four images. We generated three different sets of 
images based on three themes: art, pets, and landscapes. 
For each of the themes, we solicited 20 submissions. To 
gather more variance, we generated a duplicate set of the 
series of tasks, this time explicitly asking for workers to 
pretend they were clever cheaters. Their new task was to 
try to complete the same tagging task with the minimum of 
effort needed to avoid being caught by an inattentive re-
quester. We requested a similar group of 20 submissions 
for each image set under this condition. Our examinations 
of the end products revealed that this ‘cheating’ group in 
fact produced many acceptable submissions, suggesting 
that some of the workers may not have comprehended the 
nature of the cheating task or that “clever” cheating may 
actually have been more difficult than doing the task in 
good faith [15]. As a result, we combined the two datasets 
into one that represented a broader range of work quality. 
Of the 120 submissions, we excluded 6 from which we did 
not receive event logs. The remaining 114 points represent 
the work of 52 unique participants. 
Unlike in the noun identification task, we did not have gold 
standard images and tags to provide a quantitative evalua-
tion. Instead, we had two raters examine each group of tags 
with respect to the set of images and judge them on two 
five point scales. The first scale concerned the quantity of 

work done, where a value of 1 represented clear cheating or 
no work completed, 3 meant an adequate amount of work 
according to the HIT directions, and 5 represented excep-
tional effort. The second scale concerned the descriptive-
ness of completed work, where 1 corresponded to poor 
quality, specious, or empty tags, 3 represented tags that 
accurately described the images, and 5 meant exceptionally 
descriptive tags. The raters rated the 114 points with high 
interrater reliability (Spearman’s ρ = 0.7541, 0.7636; 
p<0.001, p<0.001 respectively). The two scales are corre-
lated, suggesting they indeed measure an innate quality 
aspect of the task results, as confirmed by their high item 
reliability (Cronbach’s α = 0.8248).  As a result we aver-
aged the results of the two scales into one rating for general 
performance, and of the 114 points, the rating for submis-
sions averaged to 3.5 out of 5 (SD=1.13). We also had the 
raters decide by consensus from the submitted tags whether 
a submission represented cheating. Of our points, 17, or 
14.1%, were identified as clear cheats. This proportion is 
smaller than in our previous experiment likely because the 
task was more complex and there were a small number of 
tasks to complete in series, thus making them less attractive 
to potential cheaters. 
We constructed task fingerprints as before from the logs, 
which averaged 107.9 events. On average, the workers 
spent 2 minutes, 32 seconds on the task, spending in total 
an average of 39.7 seconds before they typed a tag in a 
field, and 30.3 seconds typing their tags. On average they 
used 20.5 different characters and typed 105.8 keystrokes. 
The Mechanical Turk system reported times that were on 
average 27.1 seconds longer than our recorded on-task 
time. 
We investigated whether the fingerprints for image tagging 
could predict whether a person cheated or not using a logis-
tic decision tree. The resulting tree weighted primarily for 
the number of unique ASCII characters used and the total 
time spent on the task. Under 10-fold crossvalidation it 
achieved 93.0% accuracy, a kappa of 0.655, and an F-
measure of 0.930 using only those two attributes. The tree 
structure suggests that cheaters might use fewer unique 
keyboard keys (leading to fewer distinct tags) and take less 
time to complete the task than non-cheaters.  
Given this success, we also used support vector regression 
on the task fingerprints to predict the rated quality of the 
results. The resulting model significantly predicts quality 
(correlation with actual ratings: r = .5874, p<0.001). It sug-

Image Quality Rating Predicted Rating Tags 

 4.5  4.799 Orange, Storm, Mountain, Night, Clouds, Sky 

 3  3.33 Tree, Cloud, Sky 

 
 1  1.02 <no tags, with comment 'he he he!!!!'> 

    Table 3: Rated quality versus model predicted quality with tags for one of the four images tagged by the worker 



 

   

gests that the more fields accessed, more unique characters, 
fewer total keypresses, more clicks, and more total time 
spent predict higher scores. In summary, the model can 
suggest how good tags will be without knowledge of the 
tags themselves. 
We also examined whether our system could predict high 
quality outcomes, as opposed to just cheaters and low qual-
ity output. After filtering the data to only acceptable sub-
missions and higher, we applied support vector regression 
to the remaining 81 high scoring points. Once again, our 
model was highly correlated with the actual scores 
(r=0.4598, p<0.001). Thus, given only high quality data, 
we can still predict the quality rating of submitted tags. 
Our results suggest that for even qualitative, generative 
tasks like image tagging, task fingerprints encode informa-
tion that can help identify cheaters and predict the quality 
of the tags produced. The predictions relied on low-fidelity 
statistical information, such as the number of unique keys 
used and the total time on task. One can imagine quality 
ratings from the predictions functioning as confidence val-
ues for the set of tags produced. From there, tags from 
many jobs could be ranked cumulatively by order of qual-
ity.  Yet, while generative tasks represent another area of 
human computation, there still remain more complex tasks. 
Does task fingerprinting function in tasks where cognitive 
processing may be less evident through the keyboard? 

Comprehension Tasks 
We chose reading comprehension for our evaluation of task 
fingerprinting in complex cognitive work on Mechanical 
Turk. We gave workers a passage from an online test 
preparation booklet in English and had them read the text 
and then answer questions based on their reading. We as-
certained their level of comprehension through 9 questions: 
8 multiple-choice, and 1 short response sampled from the 
same test preparation booklet. Of the 8 multiple-choice 
questions, we added one question that could be answered 
easily using only the text from another question without 
even examining the passage. This allowed us to evaluate 
whether a Turker was even paying attention to the ques-
tions they were answering, or were clicking random an-
swers. We solicited 35 responses for each of two different 
passages, one corresponding to the physicist Marie Curie, 
the other expositing on the circumnavigation of the globe. 
Of the 70 Mechanical Turk results, we received 63 unique 
event logs from 45 different participants. Only 4 submis-
sions failed the test question, suggesting that by and large 
the Turkers were at least reading and understanding the 
questions. On average the workers got 5.32 questions cor-
rect out of 9 (SD=1.97). Examining the task fingerprints, 
workers spent an average of 6 minutes, 2.9 seconds on the 
task, and their task time as reported by Mechanical Turk 
differs from our recorded on-task time by an average of 
37.4 seconds. Refined logs averaged 298.6 events because 
of scrolling and mouse moment. 
As in the previous cases, we used the task fingerprints to 
predict the performance of workers on the task. In this case, 

our performance measure is the number of correct answers 
a worker entered, which approximates their overall learning 
and comprehension from the passage. Using support vector 
regression, task fingerprints significantly predicted the 
comprehension level of Turkers (r=0.260, p=0.0393). The 
predictive model depended largely on the time spent on 
focus, the difference between the recorded HIT time and 
our event log time, the total mouse and scroll movement, 
the number of clicks, and the delay between typing charac-
ters in the short response. The typing delay might relate to 
the fact that many successful submissions copy-pasted their 
answer to the short answer question from the passage. This 
produces a zero typing delay, which explains the negative 
relation between delay and number correct. Mouse move-
ment and scrolling might capture the behavior of workers 
that often refer to the passage when answering questions. 
Based on these findings, we suggest that task fingerprints 
indeed hold predictive value for higher cognitive tasks and 
functions in crowd workers.  

Avoiding Manual Labeling 
In the previous experiments we utilized fully labeled data. 
It is likely to be the case that the data used for crowd-
sourcing is neither perfect nor gold standard. More often 
than not, it is likely to be unlabeled and hard to evaluate by 
hand. Given our previous experiments’ reliance on predict-
ing labels based on an entire scored dataset, we now inves-
tigate three different means to reducing the burden on re-
questers in actually applying task fingerprinting to crowd-
sourced tasks. 
We conducted test runs of our image tagging and word 
identification data training on only small randomly selected 
proportions of the total labeled data points. We posit that if 
we are able to predict the rest of the dataset with reasonable 
accuracy, then it is likely that requesters need not label 
their entire dataset. Rather, they need only label a small 
subset to provide the necessary training for a task finger-
print predictor. In the case of image tagging, we trained a 
qualitative performance rating support vector regression 
model using 5% through 60% of the data, in increments of 
ten percent, averaging 20 runs that use a different random 
selection of data points each time. Although the model can-
not significantly predict performance using 5% and 10% of 
the data, for 20% of the data (23 points) and above the 
model predictions significantly correlate to the actual rat-
ings. There is enough data in the task fingerprints that a 
small sample and a generalized machine learning model 
can provide good accuracy. Running a similar prediction 
for accuracy in our word identification task reinforces this: 
Once again, from 20% of the data (37 points) onwards the 
model’s predictions correlated with significance to the ac-
tual accuracy values. Thus, one way to avoid being over-
burdened with labeling is to simply label a selection of ran-
dom points, create a classifier using the task fingerprints, 
and examine selected results to ensure it is behaving appro-
priately. 



 

   

However, labeling data may not be possible for all datasets 
and tasks. Yet, some tasks are similar to other tasks in Me-
chanical Turk. For instance, our reading comprehension 
task involved workers examining a passage and then click-
ing on multiple choice boxes. Would such a model port 
over to our word identification task, which asks workers to 
examine words and click to make a judgment on whether it 
is a noun? After we normalized all of the task fingerprint 
values for both reading comprehension and word identifica-
tion, we trained a support vector regression model on all of 
the normalized counts of correct answers in the reading 
comprehension problem. We then applied this model to the 
entirety of the word identification dataset, predicting its 
normalized count of correct answers. The model was able 
to significantly predict correct answers in the new dataset 
(r=0.4948, p<0.001). Thus, if one had gold standard data 
for a congruent task, one may be able to gather task finger-
prints for the benchmark job and then apply the model to 
evaluate a related different task without labels. It is particu-
larly surprising how well the model generalized given the 
fundamental differences in the nature of the tasks: reading a 
passage and answering multiple choice questions versus 
identifying nouns in a word list. Building up a toolbox of 
archetypal task fingerprints for model training may enable 
prediction for a variety of tasks and evaluations. 
It is possible that even in the absence of any labeled data, a 
mixed-initiative approach starting with unsupervised clus-
tering could be used to bootstrap the system. By visualizing 

features that differ between clusters (e.g., number of fields 
clicked on, time on task) employers could identify potential 
outliers and after investigation label the cheaters; such la-
bels could then be leveraged by the system for the unla-
beled data. Prior research using unsupervised clustering 
techniques for finding differences in problem solving skills 
between users using event logs demonstrate the potential 
viability of such an approach [6], suggesting this may be a 
profitable area for future research.  
We conducted a preliminary investigation into the feasibil-
ity of unsupervised clustering of task fingerprints. Using 
the word identification task, we stripped the points of labels 
and used expectation maximization to identify 5 clusters of 
fingerprints. Four of the clusters corresponded to high like-
lihoods of either high or low performance workers, while 
one cluster was split, warranting manual inspection. Figure 
4 shows a visualization of the clusters on two dimensions 
(fields accessed and collapsed log length); this suggests the 
potential for a mixed initiative system in which the user 
could inspect representative cluster samples and outliers, 
bootstrapping the classification process. 

CONCLUSION 
This paper introduces and evaluates task fingerprinting, a 
method for capturing crowdworker behavior and making 
inferences about their task performance. We demonstrate 
that by analyzing a worker’s procedure in a generalizable 
way, we can develop event logs and behavioral statistics 
that can predict outcome measures such as task accuracy, 
content quality, or comprehension. Furthermore, we find 
that models trained on one task can predict performance on 
other related tasks. 
We prototyped task fingerprinting by gathering event logs 
for Amazon Mechanical Turk workers and post-processing 
the data to extract statistical information about the workers’ 

 

 
Figure 3: Model prediction correlation with actual rat-
ings as training set size increases for image tagging 
and word identification 

 

Figure 4: Word identification task fingerprint clusters 
graphed based on the number of fields each user 
accessed (x) versus the length of their collapsed 
event log (y). Notice that the blue and teal clusters 
discriminate between pass and failure well. The red 
cluster encapsulates borderline points, while the dif-
fuse purple cluster gathers diffused ʻpassʼ points. 



 

   

processes. We applied this prototype to image tagging, part 
of speech classification, and passage comprehension ex-
perimentally. Training machine learning models on the 
fingerprints, we were able to accurately predict outcome 
measures such as qualitative ratings of tags, noun identifi-
cation accuracy, and passage comprehension, even when 
training using a small proportion of rated end products.  
Future work remains to be done in several areas. Investigat-
ing how task fingerprinting might affect ‘botting’, or auto-
mated task completion on markets might be identified us-
ing event log pattern detection, for example examining the 
variance of the workers’ behavior (e.g., using string com-
parison methods like minimum edit distance on refined 
event logs, or temporal variance measures). This approach 
could be even more powerful if requesters shared the fin-
gerprints of known bots as they emerged (as antivirus com-
panies do with virus hashes). More varied tasks, including 
ones where workers might spend significantly different 
amounts of time and effort on a task might be tested to re-
inforce the consistency and comparability of fingerprints 
across workers and tasks. Clustering of task fingerprints not 
based on statistical data, but rather the conformation of the 
event log strings using bioinformatics algorithms might 
also yield useful behavioral information. Moreover, there 
remains much work to be in visualizing task fingerprints 
for human inspection and analysis.   
Finally, it may be advantageous to combine task finger-
prints with other forms of task performance predictors. Our 
approach has both advantages and drawbacks that are com-
plementary to other approaches to improving crowd worker 
output, including both task design methods and post-hoc 
approaches based on gold standards or worker agreement or 
reputation. Exploring appropriate ways to combine these 
metrics is an important area for future work. 
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